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SUMMARY

1. Numerous methods have been developed to sample the biota occurring in different

ecosystems. However, the comparability of data derived from different sampling methods

is generally unknown and is a major concern when integrating data from different studies.

2. Examination of assemblage-level attributes such as taxa richness and biotic index scores

is generally inappropriate for evaluating the degree to which different sampling methods

produce comparable descriptions of entire assemblages, because these measures provide

no information regarding taxonomic composition. Multivariate methods are generally

more appropriate for this purpose, but some of the methods previously used are not

satisfactory and others have not been tested. A useful measure of sampling-method

comparability (SMC) should be independent of sampling effort, independent of the sites

sampled and have an explicit biological interpretation.

3. We used simulated data to compare two potential methods of assessing SMC, the R-

value produced by ANOSIMANOSIM and a modified version of classification strength (CS-SMC)

derived from Van Sickle’s Mean Similarity Analysis. Analyses were based on similarities

between the assemblages captured by two different sampling methods (electrofishing and

seining) employed at the same sites. Similarities were calculated two different ways: the

Bray–Curtis index and the Jaccard coefficient.

4. Based on simulated data, ANOSIMANOSIM R-values were strongly affected by sampling effort,

highly variable across sites and difficult to interpret biologically. In contrast, CS-SMC

values were highly stable over a range of sampling effort, across sites and easy to interpret

biologically.

5. Application of CS-SMC to field data showed that seining and electrofishing produced

highly comparable samples of fish in small streams: 97% comparable on average for

species lists and 94% comparable for relative abundances. Kicknet and Surber samples of

benthic invertebrates were also comparable after being standardised to a fixed count, but

to a lesser extent than fish samples: 77% comparable on average for the taxa lists and 93%

comparable for relative abundances. CS-SMC should be of general use when integrating

and synthesising assemblage data from a variety of assemblages.
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Introduction

Biotic surveys provide basic information to address a

variety of questions in ecology and environmental

management. Many sampling methods are often

available for collecting biological samples, partic-

ularly for benthic macroinvertebrates (e.g. Hellawell,

1978; Merritt, Cummins & Resh, 1984) and fish (e.g.

Hellawell, 1978; Sutherland, 1996). When conducting

assemblage surveys, the choice of sampling method

often is based on the particular objective of a project,

sampler availability, cost and familiarity with a

method (Resh & McElravy, 1993; Carter & Resh,

2001; Bonar & Hubert, 2002). However, when assem-

blage data collected in conjunction with different

studies are compiled and used to test general

ecological hypotheses or describe ecological patterns

(e.g. Karlson & Cornell, 1998; Van Rensburg et al.,

2000; Gurevitch, Curtis & Jones, 2001), the compar-

ability of different sampling methods may compro-

mise analyses and inferences (McGeoch & Gaston,

2002). This problem is significant enough that agen-

cies involved in biological monitoring are considering

or requiring that users of multi-source data specify the

degree to which data collected in different ways are

comparable (Intergovernmental Task Force on Mon-

itoring Water Quality, 1995; Carter & Resh, 2001;

Houston et al., 2002).

Sampling-method comparability (SMC) can be

generally defined as how comparable different

sampling methods are in characterising biological

assemblages. However, assemblages can be charac-

terised in numerous ways. Many studies have

compared how estimates of individual variables,

such as taxa richness, density, biotic index values

and diversity index values vary among sampling

methods (e.g. Elliott & Drake, 1981; Stark, 1993;

Humphries et al., 1998; Muzaffar & Colbo, 2002;

Trenkel et al., 2004). Unfortunately, this univariate

approach is subject to a major limitation. Because

individual variables often differ with respect to how

comparable they are (Solimini et al., 2000; Houston

et al., 2002), the overall comparability of different

sampling methods is uncertain. Answering questions

in community ecology (ter Braak, 1987; Legendre &

Legendre, 1998) and estimating the overall biological

condition of ecosystems (e.g. Hawkins et al., 2000;

Wright, Sutcliffe & Furse, 2000) often requires that

we adequately characterise entire assemblages.

Other studies have used multivariate approaches to

evaluate SMC (e.g. Furse et al., 1981; De Pauw, Roels &

Fontoura, 1986; Somerfield & Clarke, 1996). SMC has

been assessed by calculating a similarity index

between the samples collected with two methods

(e.g. Storey, Edward & Gazey, 1991). However, this

method is problematic for at least three reasons. First,

replicate samples collected with the same method

should be regarded as fully comparable although they

will rarely be identical (Schleier & Van Bernem, 1998;

Diserud & Aagaard, 2002; Plotkin & Muller-Landau,

2002). SMC based solely on the similarity between

samples collected in different ways will therefore be

underestimated. Second, the degree of similarity

among replicate samples often varies with site because

of differences in species richness and species-

abundance distributions (Cao, Williams & Larsen,

2002; Plotkin & Muller-Landau, 2002). Third, the simi-

larity among replicates typically depends on sampling

effort (Wolda, 1981; Plotkin & Muller-Landau, 2002),

defined either as the number of sample units pooled or

the number of individuals counted. These three

difficulties can all be attributed to incomplete assem-

blage characterisation (Cao et al., 2002).

The SMC has also been evaluated with ordination

or cluster analysis by examining if replicate samples

collected with different methods group by site rather

than by sampling method (Furse et al., 1981; De Pauw

et al., 1986; Storey et al., 1991; Somerfield & Clarke,

1996; Turner & Trexler, 1997). However, the grouping

of replicate samples will be affected by differences in

assemblage structure among sites as well as by the

sampling effort applied. In other words, if those sites

being compared are biologically distinct, samples are

likely to be grouped by site rather than by sampling

method. In contrast, if the sites compared are biolo-

gically similar, samples could be grouped by samp-

ling method. The choice of the particular multivariate

method used and the options selected in each step of

multivariate analysis may also yield different results

(James & McCulloch, 1990). Several nonparametric

multivariate methods are potentially more useful for

assessing SMC, including analysis of similarity or

ANOSIMANOSIM (Clarke & Green, 1988), the Mean-Similarity

Method (Van Sickle, 1997) and the Multi-Response

Permutation Procedures or MRPP (Mielke, Berry &

Johnson, 1976; McCune & Grace, 2002). However, to

our knowledge, no one has conducted such an

analysis. These three methods all measure the
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difference between within-group and between-group

similarities, but in different ways.

Whatever the method used, a robust measure of SMC

should meet three criteria: (i) it should be independent

of sampling effort, (ii) it should be stable across sites (i.e.

it should not be affected by differences in assemblage

structure among sites) and (iii) it should have an

explicit biological interpretation. In this paper, we

examined how well two multivariate indices per-

formed as measures of SMC with respect to these three

criteria. One index was based on a version of classifi-

cation strength (CS) described by Van Sickle (1997). The

other index was the R-value produced by ANOSIMANOSIM

(Clarke & Green, 1988). We applied these measures to

samples of fish collected by electrofishing and seining

and samples of macroinvertebrates collected with

kicknet and Surber samplers. Our specific objectives

were to determine: (i) how the values of the two SMC

measures varied across sampling sites and with differ-

ent sampling effort, (ii) if estimates of SMC differed

when measured with different similarity indices and

(iii) how comparable the two pairs of commonly used

sampling methods were in characterising taxonomic

composition and assemblage structure.

Methods

Two similarity-based, nonparametric approaches for

measuring SMC

Clarke & Green (1988) described a randomisation test

on a similarity matrix, ANOSIMANOSIM, to test for differences

in assemblage structure among groups of samples.

The difference between two groups is measured by R,

which is calculated as

R ¼ 4ð�rB � �rWÞ
nðn� 1Þ ;

where �rB ¼ mean ranked between-group similarity,

�rW ¼ mean ranked within-group similarity and n ¼
the total number of samples. R-values range between

)1 and 1. A positive value indicates differences exist

among groups and 0 means complete random group-

ing. Negative values occur when the samples within a

group are less similar to one another than to the

samples of other groups, which may be caused by

inappropriate sampling designs (Chapman & Under-

wood, 1999). The ANOSIMANOSIM function in the Vegan-

library of R statistical routines (Dixon, 2003; Oksanen,

2004) calculates ANOSIMANOSIM R and reports statistical

significance levels based on 1000 runs.

Van Sickle (1997) proposed a conceptually similar,

but different way of measuring the difference among

groups, which he called classification strength (CS).

CS is calculated as

CS ¼ 2�Sb

�Sw1 þ �Sw2

for comparison of two groups, which was the focus of

the present study, where �Sb ¼ mean between-group

similarity, �Sw1 ¼ the mean within-group similarity for

group 1 and �Sw2 ¼ the mean within-group similarity

for group 2. We used the FORTRAN software provi-

ded by Van Sickle (1998) to calculate CS. Mielke et al.

(1976) described a similar method, called MRPP.

Because the statistic describing differences between

groups in MRPP, A, is expected to vary in a similar

way as CS (Van Sickle, 1998), we did not include

MRPP in this comparison. For convenience, we use

100% · CS as a measure of SMC, hereafter referred to

as CS-SMC. When samples collected with two meth-

ods share no species (i.e. �Sb ¼ 0), but replicate

samples collected with the same method share at

least one species (i.e. �Sw1 > 0 and �Sw2 > 0), then CS-

SMC ¼ 0%. If the average within-method similarity

(�Sw12) is equal to �Sb, CS-SMC ¼ 100%.

Two commonly used similarity indices

The values of both within-group and between-group

similarities will be dependent on which similarity

measure is used (e.g. Storey et al., 1991; Cao, Williams

& Bark, 1997), and so will ANOSIMANOSIM R and CS-SMC

values. Among the numerous similarity measures

available (Legendre & Legendre, 1998), the Jaccard

coefficient and the Bray–Curtis index appear to be the

most frequently used binary and abundance-based

indices, respectively (Krebs, 1989; Legendre & Le-

gendre, 1998) and were thus selected for quantifying

SMC in our study. We followed Krebs (1989) when

calculating the two indices. Data were transformed by

log(x + 1) to down-weight the effect of abundant taxa

on Bray–Curtis values (Palmer, 1993).

Data sets

We used data from two field surveys to evaluate

how ANOSIMANOSIM R and CS-SMC values quantified
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sample comparability. In both field surveys, stream

fauna were collected with two different sampling

methods.

Wyoming stream fish. Patton et al. (2000) surveyed nine

stream sites (2.5–10.2 m wide) in the Missouri River

drainage of eastern Wyoming, U.S.A. They delineated

16 contiguous 50-m long subreaches at each site. Two

sampling methods, electrofishing and seining, were

used to sample alternate subreaches. The number of

individuals in each species was recorded for each

subreach (Table 1).

Australian stream macroinvertebrates. Storey et al. (1991)

collected six Surber samples (0.0625 m2, 250 lm

mesh) and one 3-min kicknet sample (approximately

10 m transect, 250 lm mesh) from riffle habitats at

multiple sites in 1987. Most taxa were identified to

genus or species level. A subset of 15 samples by each

method that contained at least 1000 individuals was

drawn from the data set (Table 1) to examine how

SMC varied over a wide range of fixed counts and

across sampling sites.

Simulated data. The two field data sets were based on

much greater sampling efforts than those used in

routine stream assemblage surveys. However, both

ANOSIMANOSIM and the Mean-Similarity Method require that

samples of each group being compared be independ-

ent of one another, and these two data sets were not

large enough to examine the effect of sampling effort

with much rigor. For example, electrofishing samples

from eight subreaches can be combined into only two

distinct samples with a sampling effort of four times

the size of the original samples. We therefore used

simulation to overcome this difficulty (Warton &

Hudson, 2004). The Wyoming fish data set is unique

in that species-sample curves reached an asymptote

for both sampling methods at all sites (Patton et al.,

2000), i.e. collecting more replicates would not add

new species, and is therefore ideal for simulation. We

used this data set to first derive models that best

described the distribution of each species among the

original samples and then generate several, large sets

of simulated replicates of different size.

To describe the spatial distribution of fish species

within the stream, we used generalised linear models

to fit the distributions of abundances for each fish

species across the eight subreaches at each site that

were sampled with each method. The spatial variation

in abundances of these species were best described by

either a negative binomial distribution (usually abun-

dant species) or a Poisson distribution (usually rare

species), patterns that agree with many previous

observations (e.g. Green & Young 1993; Plotkin &

Muller-Landau, 2002; McArdle & Anderson 2004). We

then used the derived model parameters (mean and

an over-dispersion measure) to simulate 80 random

replicates for each species at each of the nine sites and

for each sampling method. To check the realism of the

simulation, we compared how the simulated repli-

cates clustered in non-metric multidimensional scal-

ing (NMDS) ordination space (PC-ORD; McCune &

Grace, 2002) relative to the actual field replicates. In all

cases, the eight field replicates appeared to be

randomly distributed among the 80 simulated repli-

Table 1 Summary of two assemblage surveys: fish at nine

stream sites, Wyoming, U.S.A. (Patton et al., 2000) and macro-

invertebrates on 15 sampling occasions in Australia streams

(Storey et al., 1991)

Sampling sites

or occasions

Sampling methods

Electrofishing Seining

Wyoming fish

Total

individuals Richness

Total

individuals Richness

1 2189 7 3304 7

2 5352 11 2052 11

3 1070 13 651 13

4 450 9 1249 9

5 1188 14 3206 14

6 556 7 413 7

7 1959 8 935 8

8 790 9 425 9

9 278 10 251 10

Australian

macroinvertebrates Surber samplers 3-min Kick-net

1 3597 73 3656 49

2 11 212 40 2933 38

3 2361 36 1056 16

4 4253 58 2063 45

5 3815 36 1359 30

6 3591 44 1402 23

7 6353 31 1596 27

8 5510 42 3610 22

9 18 280 26 5132 21

10 20 357 32 8120 21

11 13 299 41 2740 23

12 8215 32 2215 14

13 30 738 32 2306 21

14 7881 38 3412 25

15 18 179 32 8149 23
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cates in ordination space, confirming the realism of

our simulated samples.

Data analysis

Data analysis consisted of examination of simulated

data to evaluate the variation of ANOSIMANOSIM R and CS-

SMC values across sampling sites and at different

sampling efforts followed by application of CS-SMC

to evaluate the comparability of the two different fish

(eletrofishing and seining) and benthos (Surber and

kicknet) sampling methods.

To determine if ANOSIMANOSIM R and CS-SMC were

robust measures of sample comparability, we incre-

mentally pooled sets of the 80 replicates (subreaches)

to vary sampling effort. For example, each of the

original 80 replicates represented a sampling effort of

one; pooling sets of two replicates created 40 samples

having a sampling effort of two, and so on. We then

calculated ANOSIMANOSIM R and CS-SMC values for each

sampling effort at each site.

Because results of the simulation analysis showed

ANOSIMANOSIM R to be sensitive to sampling effort and

differences in assemblage structure between sites, we

only used CS-SMC to quantify comparability of the

fish and benthos sampling methods. Because the

number of replicate samples per site for both the fish

and invertebrate data was small, we used a random

re-sampling procedure to generate more accurate

estimates of CS-SMC values than would have been

otherwise possible. Also, although the original spa-

tially defined sampling units were used in the fish

sampling analyses, we used fixed-counts as the

measure of sampling effort for the invertebrate

samples, a procedure typically used in bioassessment

surveys (e.g. Carter & Resh, 2001). Such computer-

based subsamples were very similar in both richness

and taxonomic composition to those obtained by

manual subsampling (Cao, Hawkins & Vinson, 2003).

To conduct the CS-SMC analyses, we randomly

drew m replicates or individuals for each sampling

method (where m ranged between 1 and N/2) from a

set of N replicate samples or individuals and pooled

them into a single sample. Random, individual-based

sampling is commonly used to standardise sampling

effort in studies of stream macroinvertebrate ecology

and for bioassessment purposes (Carter & Resh, 2001).

Moreover, fixed-count subsampling is simply a

manual form of rarefaction, a procedure that has long

been used to standardise comparisons of species

richness (Heck, Van Belle & Simberloff, 1975; Gotelli

& Graves, 1996; Gotelli & Colwell, 2001). We then

calculated the similarity (Sb) between these two

samples. This process was repeated 1000 times to

estimate the average similarity (�Sb) between samples

collected by two methods. We then randomly drew an

even number (n) of replicates or individuals

(2 £ n £ N) from the total set of N replicates or

individuals available for each sampling method,

evenly divided them into two samples and calculated

the within-method similarity for the pair of samples

(�Sw1 or �Sw2). This process was also repeated 1000 times

to obtain an average within-method similarity for each

method (�Sw1 or �Sw2) at each site. CS was then

calculated as described earlier. However, we do not

report significance levels for these analyses because the

1000 pairs of samples generated by re-sampling were

not truly independent from one another. Our goal in

this study was to estimate CS-SMC as accurately as

possible, not test for significant differences between

groups of samples. Likewise, because the statistical

distributions of CS-SMC values are not known, we did

not use standard deviations or 95% confidence limits

to quantify variation in these two variables. Instead,

we plotted the values of CS-SMC for each site against

sampling effort to show their variation across sites and

with sampling effort. When plotting data, we slightly

jittered completely overlapping data points horizon-

tally to avoid obscuring trends.

Results

Simulated data and ANOSIMANOSIM R and CS-SMC values

When applied to simulated data, ANOSIMANOSIM R and CS-

SMC differed markedly in their sensitivity to sampling

effort and sites used (Figs 1 & 2). ANOSIMANOSIM R-values

based on Bray–Curtis index increased substantially

with increasing sampling effort at all nine sites (Fig. 1a)

and were always statistically significant (P < 0.01). On

average, ANOSIMANOSIM R-values increased by 0.6 units when

sampling effort increased from one to eight pooled

subreaches. This result implied that the comparability

between samples collected by electrofishing and sein-

ing decreased with higher sampling effort, although �Sb

actually increased with increasing sampling effort

(Fig. 1c). In contrast, CS-SMC values based on the

Bray–Curtis index varied little with sampling effort
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Fig. 1 Changes in values of A N O S I MA N O S I M R (a), CS-SMC (b) and

between-method similarity (c) measured with the Bray–Curtis

index with increasing sampling effort (i.e. the number of su-

breaches pooled) and across nine stream sites based on simu-

lated fish samples.
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Fig. 2 Changes in A N O S I MA N O S I M R (a), CS-SMC (b) and the between-

method similarity (c) measured with the Jaccard coefficient with

increasing sampling effort (i.e. the number of subreaches

pooled) and across nine stream sites based on simulated fish

samples.
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(Fig. 1b), although they were always significant

(P < 0.05). Both measures of SMC were affected by

differences in assemblage structure between sites, but

the differences among sites in CS-SMC values (up to

0.11) were much smaller than for ANOSIMANOSIM R-values (up

to 0.55).

When similarities were measured with the Jaccard

Coefficient, ANOSIMANOSIM R-values usually decreased with

increasing sampling effort (Fig. 2a), indicating that

the differences between electrofishing and seining

samples decreased with increasing sampling effort.

These ANOSIMANOSIM R-values were usually significant

(P < 0.01) at low sampling effort, but not at high

sampling effort (P > 0.05). With the exception of one

stream, the trend for decreasing R-values with

increasing sampling effort generally paralleled the

increase in between-method Jaccard coefficient val-

ues that occurred with increasing sampling effort

(Fig. 2c). At the highest sampling effort (eight pooled

subreaches), ANOSIMANOSIM R-values were zero at several

sites because all species were captured at these sites

with both methods. CS-SMC values based on the

Jaccard coefficient were much less affected by

sampling effort (Fig. 2b), although significance levels

associated with the CS-SMC values were affected

similarly as in ANOSIMANOSIM R. As with Bray–Curtis based

measures of SMC, both ANOSIMANOSIM R and CS-SMC

based on the Jaccard coefficient were also affected by

site, but the differences among sites in CS-SMC

values (up to 0.15) were again much smaller than for

ANOSIMANOSIM R-values (up to 0.56).

Applying CS-SMC to field data

The CS-SMC based on the field samples showed that

electrofishing and seining were highly comparable at

all sampling efforts and at all sites (Fig. 3a,b). CS-SMC

values ranged between 70 and 100% (mean ¼ 97%)

when based on the Jaccard coefficient (Fig. 3a), indica-

ting the two sampling methods almost always captured

the same set of species. CS-SMC varied from 83 to 99%

(mean ¼ 91%) when based on the Bray–Curtis index

(Fig. 3b), indicating the two sampling methods were

also highly comparable in characterising the relative

abundances of species within the assemblage.

Fixed-count subsamples of benthic macroinverte-

brates drawn from kicknet and Surber samples were

somewhat less comparable with one another than the

fish sampling methods, especially when based on the

Jaccard coefficient (Fig. 3c,d). CS-SMC based on the

Jaccard coefficient ranged between 61 and 99% across

all 15 sites and five sampling efforts (100–500 counts),

with a mean of 77% (Fig. 3c). However, CS-SMC

based on the Bray–Curtis index ranged between 85

and 100% across all sites and sampling efforts

(mean ¼ 93%) (Fig. 3d). CS-SMC values were slightly

>100% in a few cases, which is equivalent to small

negative ANOSIMANOSIM R-values.

Discussion

Sharing data on assemblage-level surveys among

different environmental agencies, monitoring pro-

grammes and researchers promotes data syntheses

and facilitates the testing of ecological hypotheses

through meta-analysis or related techniques. How-

ever, the variability in use of different sampling meth-

ods, among other inconsistencies (Resh & McElravy,

1993; Carter & Resh, 2001; Cao et al., 2003), presents a

major challenge to such efforts. CS-SMC provides a

means for evaluating the compatibility of different

data sets prior to analysis in terms of four desirable

properties: (i) it is based on the whole assemblage, (ii)

it provides much better control over sampling effort

and site effects than does either simple measures of

between-method similarity or ANOSIMANOSIM R-values, (iii)

it has an explicit biological interpretation and (iv) it

appears less sensitive to the similarity index used than

were ANOSIMANOSIM R-values.

In contrast to CS-SMC, ANOSIMANOSIM R-values do not

meet the three criteria that characterise a useful

measure of SMC. It was strongly dependent on both

sampling effort (also see Growns et al., 1997) and

differences in assemblage structure between sites. It

can also be potentially misleading. For example, when

the similarity between samples collected with

two methods increased at higher sampling efforts,

ANOSIMANOSIM R-values implied that the two sets of samples

became increasingly dissimilar, which contradicted

the increase in between-method similarity (�Sb). This

behaviour likely occurred because (i) when similarity

values are ranked in ANOSIMANOSIM, the magnitude of the

real difference between samples is lost and (ii)

as within-group similarities increased with higher

sampling effort, slight, but consistently lower be-

tween-group similarities could lead to high R-values

and higher significance levels. As is true of statistical

tests in general (Johnson, 1999), biological significance
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should not be inferred solely from a significant

statistical test. For these reasons, we do not recom-

mend use of ANOSIMANOSIM R-values as a measure of SMC.

Use of CS-SMC implied that samples of both fish

and macroinvertebrates collected by different meth-

ods can be highly comparable if species composition

is the primary variable of interest. Even for compar-

isons based on relative abundance, the >90% agree-

ment may be sufficient to allow combining of data

without serious confounding of results. Even for the

invertebrate survey data, in which raw sample data

may not be comparable because of gross differences in

counts, comparable data were derived by standardis-

ing the samples to a common fixed-count of individ-

uals. The few cases in which CS-SMC was slightly

>100% was likely a consequence of random sampling

error and should not compromise use of CS-SMC.

We believe that CS-SMC should be applicable to

many other taxonomic groups and ecosystems. In

practice, the evaluation of SMC should include

enough replicate samples, e.g. >10 taken at enough

sites (e.g. >10) to ensure that results are both accurate

and can be generalised to other data sets. The

sampling sites chosen should represent a range of

habitat characteristics and biodiversity. When integ-

rating existing assemblage data from multiple sur-

veys, criteria should be set regarding the minimum

level of comparability that must be met. However, the

exact level of CS-SMC to be used will likely vary

depending on the specific objectives of a study. For
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Fig. 3 Changes in the comparability (CS-SMC) of electrofishing and seining samples measured with the Jaccard coefficient (a) and

Bray–Curtis index (b) with increasing sampling effort (one to eight subreaches pooled) and across nine stream sites in Wyoming, and

changes in the comparability of kicknet and Surber samples after being standardised to a fixed count, measured with the Jaccard

coefficient (c) and Bray–Curtis index (d) with increasing sampling effort (100–500 fixed counts) and across 15 stream sites in Australia.
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example, a relatively low CS-SMC might be appro-

priate for describing trends in species richness at large

spatial scales, but a higher CS-SMC may be needed

when developing and applying predictive models

used to assess the biological condition of individual

sites, e.g. RIVPACS (Wright et al., 2000). We empha-

sise that CS-SMC only measures the comparability of

sampling methods. The extent to which a given

sampling method characterises the biological assem-

blage of interest (i.e. sample representativeness) is a

different question and must be evaluated separately

with different methods. The mean similarity across

multiple pairs of replicates is one way of measuring

sample representativeness (e.g. Cao et al., 2002).

Finally, SMC is a major, but not the only concern in

data synthesis. Other concerns include differences in

taxonomic resolution used across data sets, sampling

frequency and the survey design used.

Data sharing can be of great value to programmes

that have limited sampling budgets. Although it is

unlikely that different agencies, states or nations will

adopt standard sampling methods as a means of

increasing data sharing, many of the benefits of data

sharing might be realised if we knew which data sets

can be appropriately combined and which ones can

not. We believe use of the CS-SMC measure described

here will allow more robust and meaningful assess-

ment of the comparability of assemblage-level data

than previously possible.
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